在正庚烷和4-甲基-2-戊酮中,SEBS1和SEBS2的ΔG0都小于零。相对分子质量越大,ΔG0越小,表明分子链越长,SEBS胶束越稳定。
在正庚烷中,ΔH0小于零,表明胶束形成过程中要放出热量,聚苯乙烯/正庚烷的相互作用被聚苯乙烯/聚苯乙烯和正庚烷/正庚烷的相互作用所代替;SEBS2的ΔH0小于SEBS1的,是因为后者的聚苯乙烯链段长度较前者的小。
在4-甲基-2-戊酮中,SEBS的ΔH0小于在正庚烷中的,这是由于正庚烷中聚(乙烯/丁二烯)嵌段以环状结构形成胶束的壳,有些聚苯乙烯嵌段一端在核中,另一端伸展在溶液中(在4-甲基-2-戊酮中不存在这种现象),聚苯乙烯/正庚烷相互作用被聚苯乙烯/聚苯乙烯和正庚烷/正庚烷相互作用取代的数目较小的缘故。
在这两种选择性溶剂中ΔS0都小于零,表明胶束形成过程为有序性增加。虽然SEBS1和SEBS2在正庚烷中的TΔS0相近,但是大于它们在4-甲基-2-戊酮中的,因为在正庚烷中聚(乙烯/丁二烯)嵌段在胶束的壳中是环状结构,少数聚苯乙烯嵌段一端在胶束的核中,另一端伸展在溶液中,所以SEBS胶束的有序性在正庚烷中要低于在4-甲基-2-戊酮中。
3.2 胶束形成的动力学
用稳态荧光法和超速离心法可以探测胶束和大分子之间的动力学平衡。Prochazka等[68]分别将带有荧光给体和荧光收体的聚苯乙烯-氢化聚异戊二烯两嵌段共聚物胶束溶液混合,胶束之间发生了交换,没有观察到从给体到收体之间的能量转移。平衡过程非常复杂,大致可分为2个过程:快速过程(分钟级)和慢速过程(小时级),其准确值取决于聚苯乙烯胶束核的溶胀能力。Tian等[69]将2种不同相对分子质量的共聚物胶束混合,用分析超速离心机检测中间沉降系数,发现当两个不同浓度界面混合均匀时,大分子和胶束之间需要几个小时才能达到平衡。4 胶束的流体力学
通常情况下,嵌段共聚物胶束的形成不仅伴随着热力学变化,而且由于胶束结构的收缩导致其粘度下降。这个特性非常实用,例如降低温度可使聚苯乙烯-氢化聚异戊二烯共聚物在矿物油中形成胶束,溶液粘度降低5倍,因此可将这种共聚物开发成为粘度改进剂[3]。
线性聚合物在稀溶液中的粘度和扩散系数随浓度变化较小,而嵌段共聚物胶束的变化则可达10%。浓度继续增加时,由于形成了微晶格,导致零剪切粘度剧增。
在亚浓溶液区域中,中间嵌段为核的三嵌段共聚物胶束具有显著不同的流体力学特性。由于胶束的触角相互吸引,稀溶液和亚浓溶液之间的交叉浓度明显小于封闭缔合模型的交叉浓度,胶束仍然保持核壳结构和大小,因此这种胶束可以用来改善溶液的粘度。
5 结束语
嵌段共聚物在选择性溶剂中的缔合行为不同于低分子表面活性剂,有其特殊性质。对于二嵌段共聚物而言,计算机模拟在胶束的结构和性质研究方面已经取得很大进展,但目前还不能准确预测多嵌段共聚物胶束的一系列特征参数,这有待于进一步研究。嵌段共聚物胶束将在医药、农业和生态等行业得到广泛应用。
作者简介:嵇培军,博士。从事聚合物复合材料性能的研究工作。已发表论文14篇。
嵇培军(北京航空材料研究院,100095)
蔡良元(北京航空材料研究院,100095)
徐坚(中国科学院化学研究所高分子物理开放实验室,北京)
马军(中国科学院化学研究所高分子物理开放实验室,北京)
叶美玲(中国科学院化学研究所高分子物理开放实验室,北京)
施良和(中国科学院化学研究所高分子物理开放实验室,北京)
参考文献
[1]Ma Y H, Cao T, Webber S E. Polymer micelles from poly(acrylic
acid)- graft- poly(styrene)[J]. Macromolecules, 1998, 31: 1 773
[2]Grubisic- Gallot Z, Gallot Y, Sedlacek J. Study of polystyrene- block-
poly(methyl mathacrylate) micelles by size exclusion chromatography/ low angle laser light
scattering: 1. Influence of copolymer concentration and flow rate[J]. Macromol Chem
Phys,1994, 195:781
[3]Tuzar Z. Polymer colloids[J]. Iranian J Polym Sci Tech, 1995, 41(1):34
[4]Xu R, Winnik M A. Light- scattering study of the association behavior of styrene-
ethylene oxide block copolymers in aqueous solution[J].Macromolecules, 1991, 24:87
[5]Kataoka K. Design of nanoscopic vehicles for drug targeting based on micellization
of amphiphilic block copolymers[J]. J Macromol Sci, Pure Appl Chem, 1994, A 31: 1 759
[6]Service K F. Dendrimers: Dream molecules approach real applications[J]. Science,
1995, 267: 458
[7]Scholz C, Iijima M, Nagasaki Y, et al. A novel reactive polymeric micelle with
aldehyde groups on its surface[J]. Macromolecules, 1995, 28:7 295
[8]Gref R, Minamitake Y, Peracchia M T, et al. Biodegradable long- circulating
polymeric nanosphers[J]. Science, 1994, 263:1 600
[9]Prochazka K, Kiserow D J, Webber S E. Fluorescence polarization study of polymer
micelles[J].Acta polymer, 1995, 46:277
[10]Cammas S, Kataoka K. Functional poly- [thylene oxide)- co- (β - benzyl-
L- aspartate)]polymeric micelles block copolymer synthesis and micelles formation[J].
Macromol Chem Phys, 1995, 196:1 899
[11]Huang H Y, Wooley K L. Amphilic nanospheres of polyisoprene core and cross-
linked poly(acrylic acide) shell[J]. Polymer Reprints, 1998,39(1):239
[12]Guo A, Liu G J, Qiao L. Star polymers and nanospheres from cross- linkable
diblock copolymers[J]. Macromolecules, 1996, 29:2 487
[13]Liu G J. Nanofibers. Adv Mater, 1997, 9:437
[14]Tuzar Z, Stepanek P, Konak C, et al. Block copolymer micelles near critical
condition[J]. J Coll Inter Sci,1985, 105(2):372
[15]Prochazka K, Mandak T, Bednar B, et al. Behavior of reversibly associating system
in size exclusion chromatography: Interpretation of experimental data based on theoretical
model[J]. J Liq Chromatogra, 1990, 13(9):1 765
[16]Meiners J C, Quintel- Ritzi A, Mlynek J, et al. Adsorption of block- copolymer
micelles from a selective solvent[J]. Macromolecules, 1997, 30:4 945
[17]Topp M D C, Dijkstra P J, Talsma H, et al. Thermosensitive micelle- forming
block copolymers of poly(ethylene glycol) and poly(N- isopropylacrylamide)[J].
Macromolecules, 1997, 30: 8 518
[18]Price C, Woods D. A method for studying micellar aggregates in block and graft
copolymers[J]. Eur Polym J, 1973, 9:827
[19]Bluhm T L, Whitmore M D. Styrene/butadiene block copolymer micelles in heptane[J].
Can J Chem, 1985, 63:249
[20]Mochrie S G, Mayes A M, Sandy A R, et al. Dynamics of copolymer micelles revealed
by X- ray tensity fluctation spectroscopy[J]. Physical Review Letters, 1997, 78(7):1 275
[21]Legrand D G. Small- angle X- ray scattering from block polymer micelles[J]. J
Polym Sci ,Polym Symp,1978, 63:155
[22]Kriz J, Masar B, Plestil J, et al. Three- layer micelles of an ABC block
copolymer: NMR, SANS and LS study of a poly(2- ethylhexyl acrylate)- block-
poly(methyl methacrylate)- block- poly(acrylic acid) copolymer in D2O[J].
Macromolecules, 1998, 31:41
[23]Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution[J]. J Coll
Inter Sci, 1976, 6:201
[24]Meconnell G A, Lin M Y, Gast A P. Long range order in polymeric micelles under
steady shear[J]. Macromolecules,1995, 28: 6 754
[25]Ramzi A, Prager M, Richter D. Influence of polymer architecture on the formation
of micelles of miktoarm star copolymers polyethylene/poly(ethyleneproylene) in the
selective solvent decane[J]. Macromolecules, 1997, 30:7 171
[26]Hamley I W, Fairclough J P A, Ryan A J, et al. Mi cellar ordering in concentrated
solutions of di- and triblock copolymers in slightly selective solvent[J].
Macromolecules, 1998, 31:1 188
[27]Liu Y C, Chen S, Huang J S. Small- angle neutron scattering analysis of the
structure and interaction of triblock copolymer micelles in aqueous solution[J].
Macromolecules, 1998, 31: 2 236
[28]Moffit M, Yu Y S, Nguyan D, et al. Coronal structure of star- like block ionomer
micelles: An investigation by small- angle neutron scattering[J]. Macromolecules, 1998,
31:2 190
[29]Tuzar Z, Konak C, Stepanek P, et al. Dilute and semidilute solutions of ABA block
copolymer in solvents selective for A or B blocks:2.Light scattering and sedimentation
study[J]. Polymer, 1990, 31:2 118
[30]Rodrigues K, Mattice W L. Nuclear magnetic Resonance study of polymer-
surfactant interaction. 13C- NMR study of polymer- induced non- Newtonian to
Newtonian transition in a viscoelastic micelle system[J]. Langmuir,1992, 8:456
Yuan X F, Masters J. Monte carlo simulation and self- consistent field theory for a
single block copolymer chain in selective solvents[J]. Polymer, 1997, 38(2):339
Honda C, Hasegawa Y, Hirunuma R. Micellization kinetics of block copolymers in selective
solvent[J].Macromolecules, 1994, 27: 7 660
Viduna D, Limpouchova Z, Prochazka K. Conformation of self- avoiding tethered chains and
nonradiative energy transfer and migration in dense and constrained systems: A model for
cores of polymeric micelles[J]. Macromolecules,1997, 30:7 263
Konak C, Hemstedt M, Bansil R. Dynamics in solution of associating statistical
copolymers[J]. Macromolecules,1997, 30:4 342
Pitsikalis M, Hadjichristidis N. Model mono- , di- , tri- functionalized three-
arm star polybutadienes association behavior in dilute solution by dynamic light
scattering and viscometry[J]. Macromolecules,1996, 29:179
Munk P, Qin A, Tian M, et al. Characterization of block copolymer micelles in aqueous
media[J]. J Appl Polym Sci,Appl Polym Symp,1993, 52: 45
Benmouna M, Benoit H, Khaldi S, et al. On the dynamic scattering of linear and cyclic
copolymers in solution[J]. Macromolecules, 1996, 29:8 101
Bedells A D, Arafeh R M, Zhou Y, et al. Micellisation of diblock
poly(oxyethylene/oxybutylene) in aqueous solution[J]. J Chem Soc Faraday Trans, 1993,
89(8):1 235
Liu G J, Smith C K, Hu N X, et al. Formation and properties of polystyrene- block-
poly(2- hydroxythyl methacrylate) micelles[J]. Macromolecules,1996, 29:220
Prochdzka K, Glockner G, Hoff M, et al. Micellization of a radial copolymer with four
polystyrene- block- polybutadiene branches[J]. Makromol Chem 1984, 185:1 187
Zhou Z K, Chu B, Peiffer D G. Association characteristics of copolymer micelles in a
solvent selective for the middle block[J]. Langmuir, 1995, 11:1 956
Liu T B, Zhou Z, Wu C H, et al. Effects of block lengths on the association numbers and
micellar size of BnEmBn type triblock copolymer micelles in aqueous solution[J].
Macromolecules,1997, 30:7 624
Underhill R S, Ding J F, Birss V I, et al. Chain exchange kinetics of polystyrene- block-
poly(2- cinnamoylethyl methacrylate) micelles in THF/cyclopentane mixture[J].
Macromolecules,1997, 30: 8 298
Iyama K, Nose T. Temperature- concentration diagram of polystyrene- block-
polydimethylsiloxane associates formed in dilute solution of selective solvent[J].
Polymer, 1998, 39(3):651
Villacampa M, Quintane J R, Salazar R, et al. Micellization of polystyrene - b-
poly(ethylene /butylene)- b- polystyrene triblock copolymer in 4- methyl- 2-
pentanone[J]. Macromolecules, 1995, 28: 1 025
Bu L J, Yuan G X, Li B L, et al. The systematic study on micellization behavior of block
copolymer: Ⅱ Study on the micellization behavior of polystyrene- polyisoprene diblock
copolymer in the selective solvent via dynamic light scattering[J]. J Functional
Polym,1994, 7(3): 247
Canham P A, Lally T P, Price C, et al. Formation of worm- like micelles from a
polystyrene- polybutadiene- polystyrene diblock copolymer in ethyl acetate[J]. J Chem
Soc Faraday Trans , 1980, 76:1 857
Pitsikalis M, Woodward J, Mays J. Micellization of model graft copolymers in dilute
solution[J]. Macromolecules, 1997, 30:5 364
Wang Q, Price G C, Booth C. Eluent gel permeation chromatography: A new method study of
the micellisation for block copolymers in solution[J]. J Chem Soc Faraday Trans, 1992,
88(10):1 437
Price C. Micelle formation by block copolymers in organic solvents[J]. Pure Appl
Chem,1983,55(10):1 563
Bu L J, Yuan G X, Li B, et al. The systematic study on micellization behavior of block
copolymer. Ⅱ Study on the micellization behavior of polystyrene- polyisoprene diblock
copolymer in selective solvent via size exclusion chromatography[J]. J Functional Polym,
1994, 7(3), 239
Xu R L, Hu Y Z, Winnik M A. Study of polystryene- poly(ethylene oxide) block copolymer
micelles in aqueous solution by size exclusion chromatography[J]. J Chromatogra, 1991,
547:434
Prochazka K, Mandak T, Kocirik M, et al. Chromatographic behavior of reversibly
associating macromolecules. Part 1. Theoretical model[J]. J Chem Soc Faraday Trans,1990,
86: 1 103
Xu R L, Hu Y Z, Winnik M A, et al. Investigation of block copolymer adsorption onto
aqueous latex dispersion by size exclusion chromatography[J]. Langmuir,1991, 7:831
Desjardins A, Eisenberg A. Colloidal properties of block ionomers: 1. Characterization of
reverse micelles of styrene- b- metal methacrylate diblocks by size exclusion
chromatography[J]. Macromolecules, 1991, 24: 5 779
Prochazka K, Bednar B, Tuzar Z, et al. Size exclusion of associating systems Ⅱ .A model
describing the hindered release of solute from the stationary phase[J]. J Liq
Chromatogra,1989, 12(6): 102
Creutz S, Stam J V, Schryver F C D, et al. Dynamic of poly(diethylamino) alkylmethacrylate
- block - sodium methyloxylate micelles. Influence of hydrophobicity and molecular
architecture on the exchange rate of copolymer molecules[J]. Macromolecules,1998, 31:681
Spacek P, Kubin M. Investigation of block copolymer micellization by high- performance
size exclusion chromatography[J]. J Appl Polym Sci,1985,30:143
Yang R J, Ye M L, Shi L H, et al. Studies on micelle
behaviors of styrene- butadiene- styrene(SBS) trblock copolymers in methylethyl
ketone(MEK) by positron annihilation technique[J]. J Polym Sci, 1992, 10(1):55
Martin T J, Webber S E. Fluorescence studies of polymer micelles: Intracoil direct energy
transfer[J]. Macromolecules 1995, 28:8 845
Schillen K, Yekta A, Ni S R, et al. Characterization by fluorescence energy transfer of
the core of polyisoprene- poly(methyl methacrylate) diblock copolymer micelles: Strong
segregation in acetonitrile[J]. Macromolecules,1998, 31:210
Heatley F, Begum A. 13C nuclear magnetic spin- lattice relaxation in a
styrene/butadiene/styrene trblock copolymer in solution[J]. Makromol Chem 1977, 178:1 205
Brown D S, Dawkins J V, Farnell A S, et al. Study of micelle formation by the diblock
copolymer poly(styrene- b- dimethylsiloxane) in n- dodecane by small angle X- ray
scattering[J]. Eur Polym J,1987, 23(6): 463
Schillen K, Brown W, Johnson R M. Micellar sphere- to- rod transition in an aqueous
triblock copolymer system: A dynamic light scattering study of transitional and rotational
diffusion[J]. Macromolecules, 1994, 27: 4 825
Quintana J R, Janez M D, Katime I. Block copolymer micelles in solutions of a homopolymer:
Dynamic light scattering and viscosity studies[J]. Polymer,1996, 37(16):3 531
Quintana J R, Villacampa M, Katime I. Size exclusion chromatography of solution of block
copolymers in selective solvents[J]. Polym Inter,1995,36:325
Quintana J R, Villacampa M, Katime I. Micellization of triblock copolymers in a solvent
selective for the middle block. Influence of the molar mass[J]. Polymer, 1998, 39(11):2
111
Prochazka K, Bednar B, Mukhtar E, et al. Nonradiative energy transfer in block copolymer
micelles[J]. J Phys Chem, 1991, 95: 4 563
Tian M, Qin A, Ramireddy C, et al. Hybridization of block copolymer micelles[J]. Langmuir,
1993, 9:1 741
收稿日期:1999-04-08;修订日期:2000-02-22。 |