logo.gif (2519 字节)

合成橡胶工业
CHINA SYNTHETIC RUBBER INDUSTRY
2000 Vol.23 No.2 P.118-122

qklogo.gif (1030 字节)


选择性溶剂中的嵌段共聚物胶束

嵇培军 蔡良元 徐坚 马军 叶美玲 施良和

摘要:综述了近20年来在选择性溶剂中嵌段聚合物缔合行为的研究进展,探讨了胶束结构、表征方法及胶束形成的热力学、动力学和流体力学。
关键词:嵌段聚合物;胶束;热力学;动力学;流体力学;综述
中图分类号:TQ314.251 文献标识码:A
文章编号:1000-1255(2000)02-0118-05

Block copolymer micelles in selective solvents

Ji Peijun and Cai Liangyuan
( Beijing Institute of Aeronautical Materials)
Xu Jian,Ma Jun,Ye Meiling and Shi Lianghe
(Polymer Physics Laboratory, Institute of Chemistry, The Chinese Academy of Sciences)

Abstract: Micellization of block copolymers in selective solvents was reviewed with 69 references. The structure, kinetics, dynamics and hydronamics behavior of the formation of block copolymer micelles were discussed.
Keywords: block copolymer; micelle; kinetics; dynamics; hydronamics; review

  在选择性溶剂(对一嵌段为良溶剂,同时对另一嵌段为劣溶剂)中嵌段聚合物能够缔合形成胶束,由溶解性差的嵌段形成胶束的核,溶解性好的嵌段形成胶束的壳。大多数情况下嵌段共聚物遵循封闭缔合模型形成胶束,在胶束和溶解的大分子之间存在缔合平衡。嵌段共聚物的化学结构、溶剂选择性和温度影响胶束的性质,如缔合数、胶束相对分子质量、胶束的相对密度、临界胶束温度和临界胶束浓度[1,2]。研究嵌段共聚物在选择性溶剂中胶束的形成机理和结构,对于开发嵌段共聚物作表面活性剂[3]、增溶剂[3,4]、药物载体[3,5~11]和纳米材料[12,13],以及了解嵌段共聚物结构和性能的关系有重要的理论和实际意义。

1 胶束的结构

  由电镜[14~18]观察得到的胶束结构为球形。小角X射线[19~21]和中子散射法[22~28]证明胶束的核为均匀球形。不同于低分子表面活性剂胶束的是,嵌段共聚物胶束的核通常是溶胀的。
  当溶剂对中间嵌段有选择性时,三嵌段共聚物胶束有其特殊性,例如庚烷是聚(苯乙烯-氢化异戊二烯-苯乙烯)嵌段共聚物中间嵌段的选择性溶剂。Tuzar[29]发现,30个大分子形成1个胶束分子,三嵌段共聚物的两端嵌段形成核,中间嵌段在壳中形成环,只有少数大分子选择构象是一端在核中,另一端伸展在溶液中形成触角,即形成了章鱼模型。章鱼模型解释了这种类型胶束的特殊性质,如高粘度、低浓度下胶束的立体有序和复杂弛豫时间光谱等。最近章鱼模型得到了进一步验证[30,31]

2 胶束的表征方法

  研究嵌段共聚物胶束的报道较多,典型的嵌段共聚物和选择性溶剂如表1所示。表征嵌段共聚物胶束的方法主要有光散射法[15,16,32~58]、凝胶色谱法[38,45,48~58]、超速离心沉降法[36,40,59]、电镜法[14~18,48,58]、粘度法[35~37,49,50]、荧光法[39,43,60,61]、核磁共振波谱法[21,22,62]、中子散射法和小角X光散射法[18~28,63]
  实验[3]证明嵌段共聚物胶束有如下规律:(1)对于给定的嵌段共聚物,随着其相对分子质量的

hPI:hydrogenatedpolyisoprene;hPB:hydrogenatedpolybutadiene.

Table1 Some typical block copolymer micelle systems

Block copolymer Solvent(selectively good for)
PS-PMMA p-xylene(PS)
  Acetone(PMMA)
PS-PI Dimethylformamide(PS)
  Hexane(PI)
PS-PB-PS Methyl ethyl ketone(PS)
PS-PDMS Decane(PDMS)
PS-hPI Heptane(hPI)
  1,4-dioxane/heptane(PS)
PS-hPB-PS 1,4-dioxane(PS)
PEO-PPO-PEO Water(PEO)
PS-PEO Water(PEO)
PS-PMAc Water(PMAc)
  增加或可溶性嵌段质量分数的下降,缔合数增加。(2)对于给定的嵌段共聚物,对不溶性嵌段的溶解能力增加,例如增加温度或增加良溶剂比例,缔合数下降。(3)嵌段共聚物的嵌段数目增加,缔合数下降。两嵌段或三嵌段的共聚物胶束缔合数通常为几十,甚至几百;对于多嵌段共聚物胶束而言,缔合数小于10,甚至可能形成单分子胶束。

3 胶束的形成机理

3.1 胶束形成的热力学
  嵌段共聚物胶束的形成和解缔合可以用带有光散射检测器的停流技术来研究[64]。将沉淀剂和溶解在良溶剂中的嵌段共聚物快速共混,嵌段共聚物将发生缔合;当嵌段共聚物胶束溶液与良溶剂快速共混时,胶束发生解缔合。在形成胶束或胶束发生解缔合时,及时测量光散射强度。
  对于两嵌段或三嵌段的共聚物,形成胶束的弛豫时间需要几十毫秒,而对于两嵌段共聚物,胶束解缔合弛豫时间小于仪器检测极限(1ms),三嵌段共聚物胶束解缔合弛豫时间超过100ms。在解缔合过程中嵌段共聚物的两端嵌段必须离开较为粘稠的核区域,所以三嵌段共聚物解缔合的弛豫时间较长。
  Quintana等[65~67]利用光散射、凝胶色谱和粘度法分别研究了聚苯乙烯-聚(乙烯/丁二烯)-聚苯乙烯(SEBS)在正庚烷和4-甲基-2-戊酮溶剂中胶束形成的热力学(见表2)。

Sample

Heptane 4-methyl-2-pentanone
SEBS 1 SEBS 2 SEBS 1 SEBS 2
△G -26.2 -30.3 -48 -57
△H0 -36.8 -41.9 -216 -204
T△S0 -10.6 -11.6 -168 -147
  在正庚烷和4-甲基-2-戊酮中,SEBS1和SEBS2的ΔG0都小于零。相对分子质量越大,ΔG0越小,表明分子链越长,SEBS胶束越稳定。
  在正庚烷中,ΔH0小于零,表明胶束形成过程中要放出热量,聚苯乙烯/正庚烷的相互作用被聚苯乙烯/聚苯乙烯和正庚烷/正庚烷的相互作用所代替;SEBS2的ΔH0小于SEBS1的,是因为后者的聚苯乙烯链段长度较前者的小。
  在4-甲基-2-戊酮中,SEBS的ΔH0小于在正庚烷中的,这是由于正庚烷中聚(乙烯/丁二烯)嵌段以环状结构形成胶束的壳,有些聚苯乙烯嵌段一端在核中,另一端伸展在溶液中(在4-甲基-2-戊酮中不存在这种现象),聚苯乙烯/正庚烷相互作用被聚苯乙烯/聚苯乙烯和正庚烷/正庚烷相互作用取代的数目较小的缘故。
  在这两种选择性溶剂中ΔS0都小于零,表明胶束形成过程为有序性增加。虽然SEBS1和SEBS2在正庚烷中的TΔS0相近,但是大于它们在4-甲基-2-戊酮中的,因为在正庚烷中聚(乙烯/丁二烯)嵌段在胶束的壳中是环状结构,少数聚苯乙烯嵌段一端在胶束的核中,另一端伸展在溶液中,所以SEBS胶束的有序性在正庚烷中要低于在4-甲基-2-戊酮中。
3.2 胶束形成的动力学
  用稳态荧光法和超速离心法可以探测胶束和大分子之间的动力学平衡。Prochazka等[68]分别将带有荧光给体和荧光收体的聚苯乙烯-氢化聚异戊二烯两嵌段共聚物胶束溶液混合,胶束之间发生了交换,没有观察到从给体到收体之间的能量转移。平衡过程非常复杂,大致可分为2个过程:快速过程(分钟级)和慢速过程(小时级),其准确值取决于聚苯乙烯胶束核的溶胀能力。Tian等[69]将2种不同相对分子质量的共聚物胶束混合,用分析超速离心机检测中间沉降系数,发现当两个不同浓度界面混合均匀时,大分子和胶束之间需要几个小时才能达到平衡。

4 胶束的流体力学

  通常情况下,嵌段共聚物胶束的形成不仅伴随着热力学变化,而且由于胶束结构的收缩导致其粘度下降。这个特性非常实用,例如降低温度可使聚苯乙烯-氢化聚异戊二烯共聚物在矿物油中形成胶束,溶液粘度降低5倍,因此可将这种共聚物开发成为粘度改进剂[3]
  线性聚合物在稀溶液中的粘度和扩散系数随浓度变化较小,而嵌段共聚物胶束的变化则可达10%。浓度继续增加时,由于形成了微晶格,导致零剪切粘度剧增。
  在亚浓溶液区域中,中间嵌段为核的三嵌段共聚物胶束具有显著不同的流体力学特性。由于胶束的触角相互吸引,稀溶液和亚浓溶液之间的交叉浓度明显小于封闭缔合模型的交叉浓度,胶束仍然保持核壳结构和大小,因此这种胶束可以用来改善溶液的粘度。

5 结束语

  嵌段共聚物在选择性溶剂中的缔合行为不同于低分子表面活性剂,有其特殊性质。对于二嵌段共聚物而言,计算机模拟在胶束的结构和性质研究方面已经取得很大进展,但目前还不能准确预测多嵌段共聚物胶束的一系列特征参数,这有待于进一步研究。嵌段共聚物胶束将在医药、农业和生态等行业得到广泛应用。

作者简介:嵇培军,博士。从事聚合物复合材料性能的研究工作。已发表论文14篇。
嵇培军(北京航空材料研究院,100095)
蔡良元(北京航空材料研究院,100095)
徐坚(中国科学院化学研究所高分子物理开放实验室,北京)
马军(中国科学院化学研究所高分子物理开放实验室,北京)
叶美玲(中国科学院化学研究所高分子物理开放实验室,北京)
施良和(中国科学院化学研究所高分子物理开放实验室,北京)

参考文献

[1]Ma Y H, Cao T, Webber S E. Polymer micelles from poly(acrylic acid)- graft- poly(styrene)[J]. Macromolecules, 1998, 31: 1 773
[2]Grubisic- Gallot Z, Gallot Y, Sedlacek J. Study of polystyrene- block- poly(methyl mathacrylate) micelles by size exclusion chromatography/ low angle laser light scattering: 1. Influence of copolymer concentration and flow rate[J]. Macromol Chem Phys,1994, 195:781
[3]Tuzar Z. Polymer colloids[J]. Iranian J Polym Sci Tech, 1995, 41(1):34
[4]Xu R, Winnik M A. Light- scattering study of the association behavior of styrene- ethylene oxide block copolymers in aqueous solution[J].Macromolecules, 1991, 24:87
[5]Kataoka K. Design of nanoscopic vehicles for drug targeting based on micellization of amphiphilic block copolymers[J]. J Macromol Sci, Pure Appl Chem, 1994, A 31: 1 759
[6]Service K F. Dendrimers: Dream molecules approach real applications[J]. Science, 1995, 267: 458
[7]Scholz C, Iijima M, Nagasaki Y, et al. A novel reactive polymeric micelle with aldehyde groups on its surface[J]. Macromolecules, 1995, 28:7 295
[8]Gref R, Minamitake Y, Peracchia M T, et al. Biodegradable long- circulating polymeric nanosphers[J]. Science, 1994, 263:1 600
[9]Prochazka K, Kiserow D J, Webber S E. Fluorescence polarization study of polymer micelles[J].Acta polymer, 1995, 46:277
[10]Cammas S, Kataoka K. Functional poly- [thylene oxide)- co- (β - benzyl- L- aspartate)]polymeric micelles block copolymer synthesis and micelles formation[J]. Macromol Chem Phys, 1995, 196:1 899
[11]Huang H Y, Wooley K L. Amphilic nanospheres of polyisoprene core and cross- linked poly(acrylic acide) shell[J]. Polymer Reprints, 1998,39(1):239
[12]Guo A, Liu G J, Qiao L. Star polymers and nanospheres from cross- linkable diblock copolymers[J]. Macromolecules, 1996, 29:2 487
[13]Liu G J. Nanofibers. Adv Mater, 1997, 9:437
[14]Tuzar Z, Stepanek P, Konak C, et al. Block copolymer micelles near critical condition[J]. J Coll Inter Sci,1985, 105(2):372
[15]Prochazka K, Mandak T, Bednar B, et al. Behavior of reversibly associating system in size exclusion chromatography: Interpretation of experimental data based on theoretical model[J]. J Liq Chromatogra, 1990, 13(9):1 765
[16]Meiners J C, Quintel- Ritzi A, Mlynek J, et al. Adsorption of block- copolymer micelles from a selective solvent[J]. Macromolecules, 1997, 30:4 945
[17]Topp M D C, Dijkstra P J, Talsma H, et al. Thermosensitive micelle- forming block copolymers of poly(ethylene glycol) and poly(N- isopropylacrylamide)[J]. Macromolecules, 1997, 30: 8 518
[18]Price C, Woods D. A method for studying micellar aggregates in block and graft copolymers[J]. Eur Polym J, 1973, 9:827
[19]Bluhm T L, Whitmore M D. Styrene/butadiene block copolymer micelles in heptane[J]. Can J Chem, 1985, 63:249
[20]Mochrie S G, Mayes A M, Sandy A R, et al. Dynamics of copolymer micelles revealed by X- ray tensity fluctation spectroscopy[J]. Physical Review Letters, 1997, 78(7):1 275
[21]Legrand D G. Small- angle X- ray scattering from block polymer micelles[J]. J Polym Sci ,Polym Symp,1978, 63:155
[22]Kriz J, Masar B, Plestil J, et al. Three- layer micelles of an ABC block copolymer: NMR, SANS and LS study of a poly(2- ethylhexyl acrylate)- block- poly(methyl methacrylate)- block- poly(acrylic acid) copolymer in D2O[J]. Macromolecules, 1998, 31:41
[23]Tuzar Z, Kratochvil P. Block and graft copolymer micelles in solution[J]. J Coll Inter Sci, 1976, 6:201
[24]Meconnell G A, Lin M Y, Gast A P. Long range order in polymeric micelles under steady shear[J]. Macromolecules,1995, 28: 6 754
[25]Ramzi A, Prager M, Richter D. Influence of polymer architecture on the formation of micelles of miktoarm star copolymers polyethylene/poly(ethyleneproylene) in the selective solvent decane[J]. Macromolecules, 1997, 30:7 171
[26]Hamley I W, Fairclough J P A, Ryan A J, et al. Mi cellar ordering in concentrated solutions of di- and triblock copolymers in slightly selective solvent[J]. Macromolecules, 1998, 31:1 188
[27]Liu Y C, Chen S, Huang J S. Small- angle neutron scattering analysis of the structure and interaction of triblock copolymer micelles in aqueous solution[J]. Macromolecules, 1998, 31: 2 236
[28]Moffit M, Yu Y S, Nguyan D, et al. Coronal structure of star- like block ionomer micelles: An investigation by small- angle neutron scattering[J]. Macromolecules, 1998, 31:2 190
[29]Tuzar Z, Konak C, Stepanek P, et al. Dilute and semidilute solutions of ABA block copolymer in solvents selective for A or B blocks:2.Light scattering and sedimentation study[J]. Polymer, 1990, 31:2 118
[30]Rodrigues K, Mattice W L. Nuclear magnetic Resonance study of polymer- surfactant interaction. 13C- NMR study of polymer- induced non- Newtonian to Newtonian transition in a viscoelastic micelle system[J]. Langmuir,1992, 8:456
Yuan X F, Masters J. Monte carlo simulation and self- consistent field theory for a single block copolymer chain in selective solvents[J]. Polymer, 1997, 38(2):339
Honda C, Hasegawa Y, Hirunuma R. Micellization kinetics of block copolymers in selective solvent[J].Macromolecules, 1994, 27: 7 660
Viduna D, Limpouchova Z, Prochazka K. Conformation of self- avoiding tethered chains and nonradiative energy transfer and migration in dense and constrained systems: A model for cores of polymeric micelles[J]. Macromolecules,1997, 30:7 263
Konak C, Hemstedt M, Bansil R. Dynamics in solution of associating statistical copolymers[J]. Macromolecules,1997, 30:4 342
Pitsikalis M, Hadjichristidis N. Model mono- , di- , tri- functionalized three- arm star polybutadienes association behavior in dilute solution by dynamic light scattering and viscometry[J]. Macromolecules,1996, 29:179
Munk P, Qin A, Tian M, et al. Characterization of block copolymer micelles in aqueous media[J]. J Appl Polym Sci,Appl Polym Symp,1993, 52: 45
Benmouna M, Benoit H, Khaldi S, et al. On the dynamic scattering of linear and cyclic copolymers in solution[J]. Macromolecules, 1996, 29:8 101
Bedells A D, Arafeh R M, Zhou Y, et al. Micellisation of diblock poly(oxyethylene/oxybutylene) in aqueous solution[J]. J Chem Soc Faraday Trans, 1993, 89(8):1 235
Liu G J, Smith C K, Hu N X, et al. Formation and properties of polystyrene- block- poly(2- hydroxythyl methacrylate) micelles[J]. Macromolecules,1996, 29:220
Prochdzka K, Glockner G, Hoff M, et al. Micellization of a radial copolymer with four polystyrene- block- polybutadiene branches[J]. Makromol Chem 1984, 185:1 187
Zhou Z K, Chu B, Peiffer D G. Association characteristics of copolymer micelles in a solvent selective for the middle block[J]. Langmuir, 1995, 11:1 956
Liu T B, Zhou Z, Wu C H, et al. Effects of block lengths on the association numbers and micellar size of BnEmBn type triblock copolymer micelles in aqueous solution[J]. Macromolecules,1997, 30:7 624
Underhill R S, Ding J F, Birss V I, et al. Chain exchange kinetics of polystyrene- block- poly(2- cinnamoylethyl methacrylate) micelles in THF/cyclopentane mixture[J]. Macromolecules,1997, 30: 8 298
Iyama K, Nose T. Temperature- concentration diagram of polystyrene- block- polydimethylsiloxane associates formed in dilute solution of selective solvent[J]. Polymer, 1998, 39(3):651
Villacampa M, Quintane J R, Salazar R, et al. Micellization of polystyrene - b- poly(ethylene /butylene)- b- polystyrene triblock copolymer in 4- methyl- 2- pentanone[J]. Macromolecules, 1995, 28: 1 025
Bu L J, Yuan G X, Li B L, et al. The systematic study on micellization behavior of block copolymer: Ⅱ Study on the micellization behavior of polystyrene- polyisoprene diblock copolymer in the selective solvent via dynamic light scattering[J]. J Functional Polym,1994, 7(3): 247
Canham P A, Lally T P, Price C, et al. Formation of worm- like micelles from a polystyrene- polybutadiene- polystyrene diblock copolymer in ethyl acetate[J]. J Chem Soc Faraday Trans , 1980, 76:1 857
Pitsikalis M, Woodward J, Mays J. Micellization of model graft copolymers in dilute solution[J]. Macromolecules, 1997, 30:5 364
Wang Q, Price G C, Booth C. Eluent gel permeation chromatography: A new method study of the micellisation for block copolymers in solution[J]. J Chem Soc Faraday Trans, 1992, 88(10):1 437
Price C. Micelle formation by block copolymers in organic solvents[J]. Pure Appl Chem,1983,55(10):1 563
Bu L J, Yuan G X, Li B, et al. The systematic study on micellization behavior of block copolymer. Ⅱ Study on the micellization behavior of polystyrene- polyisoprene diblock copolymer in selective solvent via size exclusion chromatography[J]. J Functional Polym, 1994, 7(3), 239
Xu R L, Hu Y Z, Winnik M A. Study of polystryene- poly(ethylene oxide) block copolymer micelles in aqueous solution by size exclusion chromatography[J]. J Chromatogra, 1991, 547:434
Prochazka K, Mandak T, Kocirik M, et al. Chromatographic behavior of reversibly associating macromolecules. Part 1. Theoretical model[J]. J Chem Soc Faraday Trans,1990, 86: 1 103
Xu R L, Hu Y Z, Winnik M A, et al. Investigation of block copolymer adsorption onto aqueous latex dispersion by size exclusion chromatography[J]. Langmuir,1991, 7:831
Desjardins A, Eisenberg A. Colloidal properties of block ionomers: 1. Characterization of reverse micelles of styrene- b- metal methacrylate diblocks by size exclusion chromatography[J]. Macromolecules, 1991, 24: 5 779
Prochazka K, Bednar B, Tuzar Z, et al. Size exclusion of associating systems Ⅱ .A model describing the hindered release of solute from the stationary phase[J]. J Liq Chromatogra,1989, 12(6): 102
Creutz S, Stam J V, Schryver F C D, et al. Dynamic of poly(diethylamino) alkylmethacrylate - block - sodium methyloxylate micelles. Influence of hydrophobicity and molecular architecture on the exchange rate of copolymer molecules[J]. Macromolecules,1998, 31:681
Spacek P, Kubin M. Investigation of block copolymer micellization by high- performance size exclusion chromatography[J]. J Appl Polym Sci,1985,30:143
Yang R J, Ye M L, Shi L H, et al. Studies on micelle
behaviors of styrene- butadiene- styrene(SBS) trblock copolymers in methylethyl ketone(MEK) by positron annihilation technique[J]. J Polym Sci, 1992, 10(1):55
Martin T J, Webber S E. Fluorescence studies of polymer micelles: Intracoil direct energy transfer[J]. Macromolecules 1995, 28:8 845
Schillen K, Yekta A, Ni S R, et al. Characterization by fluorescence energy transfer of the core of polyisoprene- poly(methyl methacrylate) diblock copolymer micelles: Strong segregation in acetonitrile[J]. Macromolecules,1998, 31:210
Heatley F, Begum A. 13C nuclear magnetic spin- lattice relaxation in a styrene/butadiene/styrene trblock copolymer in solution[J]. Makromol Chem 1977, 178:1 205
Brown D S, Dawkins J V, Farnell A S, et al. Study of micelle formation by the diblock copolymer poly(styrene- b- dimethylsiloxane) in n- dodecane by small angle X- ray scattering[J]. Eur Polym J,1987, 23(6): 463
Schillen K, Brown W, Johnson R M. Micellar sphere- to- rod transition in an aqueous triblock copolymer system: A dynamic light scattering study of transitional and rotational diffusion[J]. Macromolecules, 1994, 27: 4 825
Quintana J R, Janez M D, Katime I. Block copolymer micelles in solutions of a homopolymer: Dynamic light scattering and viscosity studies[J]. Polymer,1996, 37(16):3 531
Quintana J R, Villacampa M, Katime I. Size exclusion chromatography of solution of block copolymers in selective solvents[J]. Polym Inter,1995,36:325
Quintana J R, Villacampa M, Katime I. Micellization of triblock copolymers in a solvent selective for the middle block. Influence of the molar mass[J]. Polymer, 1998, 39(11):2 111
Prochazka K, Bednar B, Mukhtar E, et al. Nonradiative energy transfer in block copolymer micelles[J]. J Phys Chem, 1991, 95: 4 563
Tian M, Qin A, Ramireddy C, et al. Hybridization of block copolymer micelles[J]. Langmuir, 1993, 9:1 741

收稿日期:1999-04-08;修订日期:2000-02-22