作者简介:郭杨(1969-),男,安徽含山人,安徽开元轮胎有限责任公司工程师,学士,从事技术管理工作.
作者单位:郭杨(安徽开元轮胎有限责任公司,安徽,合肥,230011)
刘锟(安徽开元轮胎有限责任公司,安徽,合肥,230011)
潮阳(安徽开元轮胎有限责任公司,安徽,合肥,230011)
梁俐(安徽开元轮胎有限责任公司,安徽,合肥,230011)
李伟(中国科学技术大学,安徽,合肥,230027)
夏勇(中国科学技术大学,安徽,合肥,230027)
夏源明(中国科学技术大学,安徽,合肥,230027)
参考文献:
[1]郑正仁,王洪士,毛寿昌.子午线轮胎技术与应用[M].合肥:中国科学技术大学出版社,1994.
[2]长船作男.轮胎[J].王金鉴译.橡胶译丛,1982,(4):17-25.
[3]叶可舒,钟莹.国外轮胎新产品信息调研[J].轮胎工业,1998,18(6):323-329;18(7):387-394;18(8):451-457.
[4]俞淇,周锋,丁剑平.充气轮胎性能与结构[M].广州:华南理工大学出版社,1998.
[5]Nakajima Y,Kamegawa T,Abe A.Theory of optimum tire contour and its application[J].Tire Science and Technology,1996,24(3):184-203.
[6]Nakajima Y.大统一轮胎技术GUTT[J].刘大众编译.轮胎工业,1997,17(4):212-215.
[7]Abe A,Kamegawa T,Nakajima Y.Optimum Young's modulus distribution in tire design[J].Tire Science and Technology,1996,24(3):204-219.
[8]Browne A L,Arambages A.Modeling the thermal state of tires for power loss calculations[J].SAE 810163.
[9]Nemeth T,Nandori F,sarkozi L,szabo T.Application of a technical documentation system for developing new belt constructions for truck tires[J].Tire Science and Technology,1995,23(4):266-282.
[10]padovan J,Ma J,Paris H.Millipolar theory for twisted cordreinforced composites[J].Tire Science and Technology,1995,23(3):138-174.
[11]Giuliani G P.橡胶-钢丝帘线复合物力学动态损失[J].苏玉英译.橡胶译丛,1984,(4):102-105.
[12]Shen-Yi Luo,Taban F.Deformation of laminated elastomer composites[J].Rubber Chemistry and Technology,1999,72:212-224.
[13]Ebbott T G.An Application of finite element-Based fracture mechanics analysis to cord-rubber structures[J].Tire Science and Technology,1996,24(3):220-235.
[14]Smith R W.The microscopy of catastrophic tire failures[J].Rubber Chemistry and Thechnology,1997,70:283-293.
[15]Faria L O.Tire modeling by finite elements[J].Tire Science and Technology,1992,20(1):33-56.
[16]Jeusette J P,Theves M.Finite element analysis of tire/rim interface forces under braking and cornering loads[J].Tire Science and Technology,1992,20(2):83-105.
[17]张翼,唐萌.胎圈-轮辋接触问题的三维有限元分析[J].轮胎工业,1999,19(2):83-85.
[18]Whicker D,Rohde M.Modeling tire deformation for power loss calculations[J].SAE 810161.
[19]Segalman D J.Modeling tire energy dissipation for power loss calculations[J].SAE 810162.
[20]Whicker D,segalman D J,Browne A L.The structure and the use of the GMR combined thermo-mechanical tire power loss model[J].SAE 810164.
[21]Luchin J R,Peters J M,Arthur R H.Tire rolling loss computation with finite element method[J].Tire Science and Technology,1994,24 (4):206-222.
[22]Yavari B,Tworzydlo W W,Bass J M.A thermomechanical model to predict the temperature distribution of steady state rolling tires[J].Tire Science and Technology,1993,21 (3):163-178.
[23]Akasaka T.Structural mechanics of radial tires[J].Rubber Chemistry and Thechnology,1981,54:461-492.
[24]Wang T-M,Daniel I M,Huang K.Stress analysis of tire section[J].Tire Science and Technology,1996,24 (4):349-366.
[25]Mousseau C W,Clark S K.An analytical and experimental study of a tire rolling over a stepped obstacle at low velocity[J].Tire Science and Technology,1994,22 (3):162-181.
[26]Kao B G,Muthukrishnan M.Tire transient analysis with an explicit finite element program[J].Tire Science and Technology,1997,25(4):230-244.
[27]Goldstein A A.Finite element analysis of quasi-static rolling tire model for determination of truck tire forces and moments[J].Tire Science and Technology,1996,24 (4):278.