橡胶技术网

轮胎工业
TIRE INDUSTRY
2002 Vol.22 No.3 P.131-135,150

橡胶技术网

轮胎材料与结构的研究进展

Progress in tire material and structure study

刘勇  杨卫民 

摘 要:从材料和结构两方面综述了轮胎的发展历史,重点介绍了子午线轮胎的现状及最新研究进展,同时指出我国轮胎研究水平与国外的差距.轮胎骨架材料从帆布经棉帘线、人造丝、锦纶发展到钢丝和芳纶,生胶从NR发展到各种SR,轮胎结构从斜交轮胎发展到子午线轮胎;子午线轮胎结构设计理论先后出现了最佳滚动轮廓理论、平衡轮廓理论、应力分散理论、燃料高效理论、预应力轮廓理论、动态模拟最佳轮廓理论、预应力和动平衡轮廓设计理论和轮胎整体结构优化设计理论等.高性能子午线轮胎成为轮胎的发展方向,我国必须加强这方面的研究.
关键词:轮胎;骨架材料;橡胶;结构设计理论;有限元分析
分类号:TQ336.1  文献标识码:B

文章编号:1006-8171(2002)03-0131-05

基金项目:北京市科技新星计划资助项目(954811600)
作者简介:刘勇(1973-),男,山东阳谷人,北京化工大学在读硕士研究生,主要从事轮胎材料、结构和性能仿真等方面的研究.
作者单位:刘勇(北京化工大学,机电工程学院,北京,100029) 
     杨卫民(北京化工大学,机电工程学院,北京,100029) 

参考文献:

[1]彭迈,林惠音,俞淇.轮胎结构设计[M].广州:华南理工大学,1992.1-3.
[2]霍玉云.橡胶制品设计与制造[M].青岛:青岛化工学院,1989.1 188.
[3]赵旭升,贾德民.国内外子午线轮胎发展概况[J].化工进展,1998,17(3):6-8.
[4]潘玮,李戎,段菊兰.各种轮胎帘子线纤维的发展[J].纺织导报,1999(5):91-93.
[5]张宗富.浅谈帘线假定伸张值[J].轮胎工业,1997,17(2):69-72.
[6]高称意.我国轮胎帘布行业的发展历程与现状[J].橡胶工业,1999,46(9):558-563.
[7]李冰.橡胶的织物增强[J].合成橡胶工业,1998,21(2):123-126.
[8]周建,李龙.橡胶复合材料用帘子线性能特征[J].化工新型材料,1998(7):22-23.
[9]Agresti S,Bizzarri A.Reinforcement for truck tire belts[J].Tire Technology International,1998,101-102.
[10]Shellenbarger R M,Henning G N,Keefe R L.Aramid reinforced tires[J].Automotive Engineering,1991,99(8):23-24.
[11]Jelsma B.Designing new technology with aramid fibre[J].Tire Technology International,1997,59-60.
[12]郑元锁,宋月贤,王有道,等.芳纶短纤维的劈裂对复合材料性能的影响[J].橡胶工业,1998,45(8):462-466.
[13]Jelsma B.Exploeration of aramid fibre potentiality[J].Tire Technology International,1996,146-148.
[14]王同英,张清水.芳纶帘线性能及在轮胎中的应用研究[J].轮胎工业,1998,18(9):531-534.
[15]Manley K,Barry M.Benefits of solution polymerized SBR[J].Tire Technology International,1998,78-82.
[16]刘力,张立群,冯予星.绿色轮胎研究的发展[J].橡胶工业,1999,46(4):245-248.
[17]王福坤.轮胎的最新技术动向[J].世界橡胶工业,2000,27(1):56-60.
[18]Wrana C,Eisele U,Kelbch S.Measurement and molecular modeling of rolling resistance in tire treads[J].Kautschuk Gummi und Kunststoffe,2000,53(3):126-128.
[19]Freund B,Forster F.Low rolling resistance tread compounds[J].Kautschuk Gummi und Kunststoffe,1996,49(11):9.
[20]Okel T A,Waddell W H.Silica properties/rubber performance correlation,Carbon black-filled rubber compounds[J].Rubber Chemistry and Technology,1994,67(2):217-236.
[21]Goerl U,Andrea H,Arndt M,et al.Investigations into the silica/silane reaction system[J].Rubber Chemistry and Technology,1997,70(4):608-623.
[22]Goerl U.25 years of organosilanes in tire applications[J].Kautschuk Gummi und Kunststoffe,1998,51(5):416-424.
[23]梁守智,谢遂志,薛虎军,等.充气轮胎理论基础[M].北京:北京橡胶工业研究设计院,1990.493-564.
[24]Yukio Nakajima.最佳轮胎轮廓理论及其应用[J].姚岐轩译.轮胎工业,1998,18(8):462-467.
[25]刘勇,杨卫民.轮胎结构设计理论研究进展[J].弹性体,2001,11(1):45-49.
[26]周彦豪,张立群,李晨,等.短纤维/橡胶复合材料及其制品研究开发的新进展[J].合成橡胶工业,1998,21(1):1-6.
[27]Naohiko K.短纤维增强橡胶在轮胎中的应用[J].王晓冬译.轮胎工业,1997,17(6):357-359.
[28]Blume A.Analytical properties of silica--a key for understanding silica reinforcement[J].Kautschuk Gummi und Kunststoffe,2000,53(6):948-3 276.
[29]Halasa A,Gross B,Hsu B,et al.SIBR for high performance tires[J].European Rubber Journal,1990,172(6):35-38.
[30]Baker C S L,Gelling I R,Newell R.Epoxidized nature rubber[J].Rubber Chemistry and Technology,1985,58(1):67-85.
[31]游长江,贾德民,赵旭升,等.高性能轮胎用橡胶复合材料应用理论研究进展[J].轮胎工业,2000,20(7):387-395.
[32]何晓玫,刘天臣,吴桂忠.低断面轿车子午线轮胎PDEP-S设计理论[J].轮胎工业,1997,17(3):148-152.
[33]隆有明.轮胎整体结构优化设计理论TECO及其推广应用[J].上海化工,1999,24(18):17-21.
[34]杨卫民.子午线轮胎的三维非线性有限元分析和性能仿真的研究[D].北京:北京化工大学机电工程学院,1998.
[35]Weiss M,Tsujimoto S,Yoshinaga H.Belt construction optimization for tire weight reduction using the finite element method[J].Tire Science and Technology,1993,21(2):120-134.
[36]Abe A,Kamegawa T,Nakajima Y.Optimum Young's modulus distribution in tire design[J].Tire Science and Technology,1996,24(3):204-219.
[37]Kao B G,Nuthukrishnan M.Tire transient analysis with explicit finite element program[J].Tire Science and Technology,1997,25(4):230-244.
[38]潮阳.高强度钢丝帘线在全钢载重子午线轮胎带束层中的应用[J].轮胎工业,1999,19(11):653-655.
[39]闫相桥,乌大琨,王友善,等.轮胎结构有限元分析应用于轮胎结构优选Ⅱ带束层宽度的优选[J].轮胎工业,2000,20(6):337-344.
[40]朱兴元,谢志民,闫相桥,等.子午线轮胎带束层弹性常数预报[J].轮胎工业,1998,18(1):20-23.
[41]闫相桥,王友善,乌大琨,等.子午线轮胎带束层中应力的有限元分析[J].轮胎工业,2000,20(8):463-467.
[42]Kabe K,Morikawa T.A new tire construction which reduces ply steer[J].Tire Science and Technology,1991,19(1):37-65.
[43]Ager T J,Davis P A,Stubbs S M,et al.Braking,steering and wear performance of radial-belted and bias-ply aircraft tires[J].SAE 910169,1992,1-5.
[44]Pidaparti R M V.Torsional analysis of a steel cord-rubber tire belt structure[J].Tire Science and Technology,1996,24(4):339-348.
[45]Gawa H,Furuya H.A study on the contour of the truck and bus radial tire[J]. Tire Science and Technology,1990,18(4):236-261.
[46]Tseng N T,Pelle R G,Warholic T C.Finite element simulation of destructive tire testing[J].Tire Science and Technology,1991,19(1):2-22.
[47]Yavari B,Tworzydlo W W,Bass J M.A thermomechanical model to predict the temperature distribution of steady state rolling tires[J].Tire Science and Technology,1993,21(3):163-178.
[48]Fujikawa T,Funazaki A,Yamazaki S.Tire tread temperatures in actual contact areas[J].Tire Science and Technology,1994,22(1):19-41.
[49]Brockman R A,Braisted W R.Critical speed estimation for aircraft tires[J].Tire Science and Technology,1994,22(2):121-144.
[50]杨立,金新航.轮胎花纹噪声仿真系统[J].轮胎工业,1998,18(2):82-85.
[51]杨光大,陈理君.轮胎花纹噪声仿真频谱评判法[J].轮胎工业,1998,18(3):145-147.
[52]陈理君,钟克洪,张晓红,等.基于遗传算法的低噪声轮胎花纹节距排列优化方法[J].轮胎工业,2000,20(2):76-80.
[53]叶可舒,钟莹.国外轮胎新产品信息调研[J].轮胎工业,1998,18(6):323-329.


收稿日期:2001年10月15日

出版日期:2002年3月10日

请看PDF全文