橡胶技术网

橡胶工业
CHINA RUBBER INDUSTRY
2005 Vol.52 No.8 P.501-511

橡胶技术网

子午线轮胎滚动阻力的研究进展

马改陵  徐鸿  崔文勇  马良清 

摘 要:综述子午线轮胎滚动阻力的研究进展,包括轮胎滚动阻力测试技术的发展,轮胎负荷、气压和行驶速度等使用条件与轮胎滚动阻力的关系,胎面橡胶材料、骨架材料、配合剂、胶料混炼工艺以及轮胎高宽比、轮辋宽度与直径、胎体结构、胎圈结构、胎面结构等对轮胎滚动阻力的影响,重点介绍了有限元分析技术在轮胎滚动阻力研究方面的应用情况.指出有限元分析技术将随着计算机硬件的迅速发展而在轮胎结构设计中得到更广泛的应用.
关键词:子午线轮胎;滚动阻力;结构;滞后损失;有限元分析;粘弹性
分类号:U463.341+.6;O347 文献标识码:B

文章编号:1000-890X(2005)08-0501-11

Progress in rolling resistance research of radial tire

MA Gai-ling  XU Hong 

作者简介:马改陵(1969-),女,山西黎城县人,北京化工大学在读博士研究生,从事子午线轮胎滚动阻力有限元分析的研究.
作者单位:马改陵(北京化工大学,机电工程学院,北京,100029) 
     徐鸿(北京化工大学,机电工程学院,北京,100029) 
     崔文勇(北京化工大学,机电工程学院,北京,100029) 
     马良清(北京橡胶工业研究设计院,北京,100039) 

参考文献:

[1]Ebbott T G,Hohman R L,Jeusette J P,et al.Tire temperature and rolling resistance prediction with finite element ana-lysis[J].Tire Science and Technology,1999,27(1):2-21.
[2]玉野明义.タイヤの低转がり抵抗化技术[J].日本ゴム協会誌,1996,69(11):749-756.
[3]王登祥.轮胎滚动阻力文献评述[J].轮胎工业,1997,17(12):707-712.
[4]Schuring D J,Futamura S.Rolling loss of pneumatic high-way tire in the eighties[J].Rubber Chemistry and Technology,1990,63(3):315-367.
[5]Shida Z,Koishi M,Kogure T,et al.A Rolling resistance si-mulation of tires using static finite element analysis[J].Tire Science and Technology,1999,27(2):84-105.
[6]马良清.国内外轿车子午线轮胎室内滚动阻力性能分析[D].北京:北京化工大学,2004.
[7]SAE J 1269-1987.Rolling resistance measurement procedure for passenger car tires[S].
[8]Mars W V,Luchini J R.An analytical model for the transient rolling resistance behavior of tires[J].Tire Science and Technology,1999,27(3):161-175.
[9]吴桂忠,郑光亮,曲学新.影响轿车子午线轮胎滚动阻力的因素初探[J].轮胎工业,2001,21(3):131-134.
[10]Schuring D J.The rolling loss of pneumatic tires[J].Rubber Chemistry and Technology,1980,53(3):600-727.
[11]Clark C K,Schuring D.Load,speed,and inflation pressure effects on rolling loss distribution in automobile tires[J].Tire Science and Technology,1988,16(2):78-95.
[12]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,1999.
[13]Amino N,Uchiyama Y.Relationships between the friction and viscoelastic properties of rubber[J].Tire Science and Technology,2000,28(3):178-195.
[14]Pham T H,Hanafi I,Azanam S,et al.Study of two types of styrene butadiene rubber in tire tread compounds[J].Polymer Testing,2001,20(5):539-544.
[15]Dong M P,Won H H,Sang G K,et al.Heat generation of filled rubber vulcanizates and its relationship with vulcanizate network structures[J].European Polymer Journal,2000,36(11):2 429-2 436.
[16]村松凌,高桥英明.转かり抵抗低减のための材料技术[J].日本ゴム協会誌,2000,73(2):103-109.
[17]Freund B.优化胎面牵引性、磨耗和滚动阻力的新填充剂概念[J].曾泽新,綦福华译.轮胎工业,1998,18(6):352-360.
[18]林平超.低滚动阻力轮胎的开发[J].弹性体,1994,4(4):40-45.
[19]Kazuhio Y,Shunji A,Yasushi H.Use of tertiary alkyl amines to reduce rolling resistance and viscosity on silica-filled tread compound[A].17th Annual Conference of the Tire Society.Akron,USA:1998.
[20]Wang M J,Kutsovsky Y,Zhang P,et al.Using carbon-silica dual phase filler--improve global compromise between rolling resistance,wear resistance and wet skid resistance for tires[J].Kautschuk Gummi Kunststoffe,2002,55(1):33-40.
[21]Chakraborty S K,Dukhande A,Banerjee M S.The role of oxidised carbon black in tyre tread compound[A].American Chemical Society,Rubber Division,162nd[C].Pittsburgh,USA:American Chemical Society,2002.874-885.
[22]Naohiko K.Tires made of short fiber reinforced rubber[J].Rubber World,1996,214(3):31-32.
[23]Rijpkema B,Arnhem.Reducing rolling resistance of tires by short fiber[J].Kautschuk Gummi Kunststoffe,1994,47(10):748-751.
[24]Hiroshi M.Rolling resistance is important to tires[N].Rubber & Plastics News,1996-01-15(26-29).
[25]郑正仁.子午线轮胎的结构特点和性能第五讲子午线轮胎的骨架材料(上)[J].橡胶工业,1990,37(7):434-438.
[26]罗之祥,高称意.从国(境)外轮胎剖析看轮胎骨架材料的发展[J].轮胎工业,2002,22(6):327-332.
[27]施庆秋.子午线轮胎的0°带束结构[J].轮胎工业,1991,11(5):3-8.
[28]Luchini J R,Motil M M,Mars W V.Tread depth effects on tire rolling resistance[J].Tire Science and Technology,2001,29(3):134-154.
[29]Priss L S,Shumskaya A G.Mechanical losses in rubbers under loading conditions typical of tires in services[J].Tire Science and Technology,1988,16(3):171-186.
[30]Luchini J R,Peters J M,Arthur R H.Tire rolling loss computation with the finite element method[J].Tire Science and Technology,1994,22(4):206-222.
[31]Park H C,Youn S K,Song T S,et al.Analysis of temperature distribution in a rolling tire due to strain energy dissipation[J].Tire Science and Technology,1997,25(3):214-228.
[32]Gurvich M R,Andonian A T,Shaw C.Non-linear hysteretic characterization of elastomers under multi-axial loading conditions[J].Tire Science and Technology,2002,30(1):34-44.
[33]Wei Y T ,Tian Z H,Du X W.A finite element model for the rolling loss prediction and fracture analysis of radial tires[J].Tire Science and Technology,1999,27(4):250-276.
[34]Yavari B,Tworzydlo W W,Bass J M.A thermomechanical model to predict the temperature distribution of steady state rolling tires[J].Tire Science and Technology,1993,21(3):163-168.
[35]Padovan J.Finite element analysis of steady and transiently moving/rolling viscoelastic structure.Ⅰ.Theory[J].Computers and Structures,1987,27(2):249-257.
[36]Sarkar K,Kwon Y D,Prevorsek D C.A new approach to the thermomechanical analysis of tires by the finite element method[J].Tire Science and Technology,1987,15(4):261-275.
[37]Dehnert J,Volk H.An approach to predict temperature distributions in rolling tires using finite element methods[A].10th Annual Conference of the Tire Society.Akron,USA:1991.
[38]Warholic T C.Tire rolling loss prediction from the finite element analysis of a statically loaded tire[D].Akron,USA:University of Akron,1987.
[39]Allen J,Cuitino A M,Sernas V.Numerical investigation of the deformation characteristics and heat generation in pneumatic aircraft tires.Ⅱ.Thermal modeling[J].Finite Elements in Analysis and Design,1996,23(2~4):265-290.

收稿日期:2005年2月18日

出版日期:2005年8月25日

请看PDF全文