橡胶技术网

橡塑技术与装备
CHINA RUBBER/PLASTICS TECHNOLOGY & EQUIPMENT
2007 Vol.33 No.12 P.15-20

橡胶技术网

工程子午胎理论分析技术

杨卫民  李锋祥  谭晶 

摘 要:介绍了当前工程子午胎的市场需求状况和国内外的生产技术水平,指出理论分析技术应当在提高工程子午胎的质量方面发挥重要作用.进而回顾了理论分析技术在轮胎中的应用及其衍生的轮胎设计理论.分析了理论分析技术在轮胎应用中的发展趋势.介绍了子午线轮胎"动态仿真综合分析系统CASDS(Comprehensive Analysis System by Dynamic Simulation)"的技术路线和技术成熟程度,并简要介绍了整胎"Semi-Tweel"模型.国内轮胎企业尤其是投资工程子午胎项目的企业应重视理论分析技术重要价值.
关键词:理论分析;工程子午胎;计算机技术;网络技术;有限元
分类号:TQ018;TQ336.1  文献标识码:B

文章编号:1009-797(2007)12-0015-06

Theoretical analysis technique of engineering radial tire

Yang Weimin  Li Fengxiang  Tan Jing 

作者简介:杨卫民(1965-),男,教授,博士生导师,主要从事高分子材料成型加工原理与设备的研究,已发表论文多篇.
作者单位:杨卫民(北京化工大学机电工程学院,北京,100029) 
     李锋祥(北京化工大学机电工程学院,北京,100029) 
     谭晶(北京化工大学机电工程学院,北京,100029) 

参考文献:

[1]崔玉福,郑慕侨.负重轮轮胎滚动阻力数学模型及分析[J].兵工学报,1998,19(4):289~292.
[2]管迪华,代易宁,谢先海.利用试验模态参数建立轮胎滚动模型[J].清华大学学报(自然科学版),2003,43(8):1138~1142.
[3]管迪华,曾祥生,范成建.轮胎动态模型的阻尼和对滚动阻力及动态响应影响的分析[J].汽车工程,2006,28(7):643~646.
[4]王野平.轮胎滚动阻力及温度的预测[J].机械,2002,29:20~22.
[5]丁剑平,贾德民,俞淇.有限元法分析轮胎结构与滚动阻力的关系[J]橡胶工业,2005,52(10):592~595.
[6]丁剑平,贾德民,周小舒,周锋子午线轮胎滚动阻力的数值模拟[J].汽车技术,2005,(3):23~25.
[7]危银涛,刘宇艳杜星文,吴宝国.子午线轮胎滚动阻力与温度场非线性有限元分析[J].轮胎工业,1998,18(6):330~335.
[8]Konghui Guo,Dang Lu,Lei Ren.A unified non~steady non-linear tyre model under complex wheel motion inputs including extreme operating conditions[J].JSAE Review,2001,22:395~402.
[9]Y.-T.Wei,Z.-H.Tian,X.W.Du.A Finite Element Model for the Rolling Loss Prediction and Fracture Analysis of Radial Tires[J].Tire Science and echnology,1999,27(4):250~276.
[10]J.T.Tielking,R.A.Schapery.Energy Loss in an Analytical Membrane Tire Model[J].Tire Science and Technology,1977,5(3):136~151.
[11]M.K.Chakko.Analysis and Computation of Energy Loss in Radial Tires[J].Tire Science and Technology,1984,12(1):3~22.
[12]Y.D.Kwon,D.C.Prevorsek.Formation of Standing Waves in Radial Tires[J].Tire Science and Technology,1984,12(1):44~63.
[13]M.Loo.AModelAnalysis of Tire Behavior Under Vertical Loading and Straight-Line Free Rolling[J].Tire Science and Technology,1985,13(2):67~90.
[14]J.R.Luchini,J.M.Peters,R.H.Arthur.Tire Rolling Loss Computation with the Finite Element Method[J].Tire Science and Technology,1994,22(4):206~222.
[15]A.Abe,T.Kamegawa,Y.Nakajima.Optimum Young's Modulus Distribution in Tire Design[J].Tire Science and Technology,1996,24(3):204~219.
[16]H.C.Park,S.-K.Youn,T.S.Song,N.-J.Kim.Analysis of Temperature Distribution in a Rolling Tire Due to Strain Energy Dissipation[J].Tire Science and Technology,1997,25(3):214~228.
[17]T.G.Ebbott,R.L.Hohman,J.-P.Jeusette,v.Kerchman TireTemperature and Rolling Resistance Prediction with Finite Element Analysis[J].Tire Science and Technology,1999,27(1):2~21.
[18]A.Becker,V.Dorsch,M.Kaliske,H.Rothert.A Material Model for Simulating the Hysteretic Behavior of Filled Rubber for Rolling Tires[J].Tire Science and Technology,1998,26(3):132~148.
[19]Z.Shida,M.Koishi,T.Kogure,K.Kabe.A Rolling Resistance Simulation of Tires Using Static Finite Element Analysis[J].Tire Science and Technology,1999,27(2):84~105.
[20]W.V.Mars,J.R.Luchini.An Analytical Model for the Transient Rolling Resistance Behavior of Tires[J].Tire Science and Technology,1999,27(3):161~175.
[21]M.Shiraishi,H.Yoshinaga,A.Miyori,E.Takahashi.Simulation of Dynamically Rolling Tire[J].Tire Science and Technology,2000,28(4):264~276.
[22]G.Unnithan,R.Krishnakumar,A.Prasad.Application of a Shell-Spring Model for the Optimization of Radial Tire ContourUsing a Genetic Algorithm[J].Tire Science and Technology,2003,31(1):39~63.
[23]S.Futamura,A.Goldstein.ASimple Method of Handling Thermomechanical Coupling for Temperature Computation in a Rolling Tire[J].Tire Science and Technology,2004,32(2):56~68.
[24]D.Bozdog,W.W.Olson.AnAdvanced Shell Theory Based Tire Model[J].Tire Science and Technology,2005,33(4):227~238.
[25]T.B.Rhyne,S.M.Cron.Development of a Non~Pneumatic Wheel[J].Tire Science and Technology,2006,34(3):150~169.

收稿日期:2007年9月4日

出版日期:2007年12月15日

请看PDF全文